Tantalum
protective
thin coating techniques for the Chemical Process Industry: Molten salts
electrocoating as a new alternative
François
Cardarelli*, Pierre Taxil and André Savall
Abstract.
- A comparison of
corrosion resistance and basic properties of solid tantalum with other
high-performance materials used in the Chemical Process Industry (CPI)
is given. The corrosive chemicals taken into consideration are strong
acidic media. Secondly, it is pointed out that tantalum, which exhibits
excellent corrosion resistance, owing to a rapid build-up of
passivating protective film in oxidizing conditions, also has good
mechanical, thermal and electrical properties which suggest its use
when little or no metallic corrosion is tolerated. Thirdly, tantalum
thin-layer, coated onto a usual base metal, which offers the same
protection as solid metal and avoids its expensive use, is treated.
Fourthly, numerous tantalum-coating techniques for clad-vessel and CPI
devices are reviewed and compared. Amongst these coating techniques,
this paper focuses mainly on two techniques which give a very thin,
protective coating against corrosion. Thus, Chemical Vapor Deposition
(CVD) and Molten Salt Electro-deposition (MSE) are especially enhanced.
Finally, MSE which is still not widely used for manufacturing
clad-vessels is examined in greater detail.
International
Journal of Refractory Metals and Hard Materials
Volume
14,
Issues 5-6, 1996, Pages 365-381 [Full
text PDF file (1.9 MB)]
Back
to home or site
map
Copyright
©
2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021
François
Cardarelli
[last
updated: January 2nd, 2021] info@francoiscardarelli.ca
Website:
http://www.francoiscardarelli.ca All rights
reserved. Do not duplicate or mirror this site.
Keywords: maths,
physics,
mechanics, quantum
mechanics,
relativity, electricity,
electrostatic, electromagnetism,
magnetism, thermodynamics, acoustics,
optics,
chemistry,
general chemistry, inorganic chemistry, organic chemistry, analytical
chemistry, semi-micro qualitative analysis, quantitative analysis,
physical chemistry,
radiochemistry, nuclear chemistry, electrochemistry, spectrochemistry,
surface chemistry,
industrial chemistry,
chemical
engineering, electrochemical
engineering,
mechanical
engineering, electrical engineering, thermal engineering, civil
engineering, nuclear engineering,
materials engineering, materials science, materials data, properties of
materials
properties, aqueous electrolytes, electrolysis, electrodics, electrode
kinetics, corrosion science, electrodeposition, electrowinning,
electrorefining, electrocatalysis,
electrodes,
inert anode, dimensionally stable anodes (DSA®), chlorine
evolution, ruthenium
dioxide (RuO2),
DSA-Cl2,
DSA-RuO2,
oxygen evolution, iridium dioxide (IrO2),
DSA-O2,
DSA-IrO2,
mixed metal oxides (MMO), activated
titanium anodes, oxide coated titanium
anodes, lead anodes,
lead-silver anodes, lead dioxide (PbO2),
spinel electrodes,
ferrites, cobaltites, lithium
metal, lithium batteries, lithium ion batteries, lithium polymer
batteries, fuel cells, molten
salts electrolytes, molten slags, liquid metals, titanium metal,
titania, titania slag, titanium slag,
titanium dioxide (TiO2),
titanates, corrosion resistance, ferrous metals (Fe, Co, Ni, Mn), pig
iron and steel, cobalt and cobalt alloys, nickel and nickel alloys,
manganese, ferroalloys, ferrosilicon, ferrophosphorus, ferrochromium,
silico-ferromanganese, ferrovanadium, ferromolybdenum, ferrotungsten,
ferrotitanium, common nonferrous metals (Al, Cu, Zn, Pb, Sn), aluminium
and aluminum alloys, aluminum and aluminum alloys, copper and copper
alloys, zinc and zinc alloys, lead, tin,
light metals, less common metals, alkali-metals, alkaline-earth metals,
refractory metals (Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Re), titanium and
titanium alloys, zirconium and zirconium alloys, hafnium and hafnium
alloys,
vanadium and
vanadium alloys,
niobium and niobium alloys, columbium and columbium alloys, tantalum
and tantalum alloys, chromium,
molybdenum and molybdenum alloys, tungsten and tungsten alloys,
wolfram, rhenium and rhenium alloys, reactive metals, noble and
precious metals (Ag, Au), silver, gold, platinum group metals (PGMs,
Ru, Rh, Pd, Os, Ir, Pt), ruthenium, rhodium, palladium, osmium,
iridium, platinum, rare earths, scandium, yttrium, lanthanum (Sc, Y,
La), lanthanides, actinides, uranides (Th, Pa, U, Np, Pu) and
curides, uranium, thorium, plutonium, heavy metals (Zn, Cd, Hg, In, Tl,
Pb, Bi), mercury, cadmium, nonmetals, semimetals, metalloids (Si, Ge,
As, Sb, Se, Te), silicon, germanium, arsenic, antimony, selenium, tellurium,
semiconductors, superconductors,
advanced ceramics,
refractories, glasses,
dielectrics, hard
and soft
magnetics, minerals, ores, rocks, soils, meteorites, metrology,
measurements,
scientific units, weights and measures,
conversion
factors, conversion tables, handbooks, equivalences, manuals, guide,
système international d'unités, SI, SI derived
units,
MKSA, Giorgi, metric system, US customary system, American units, US
units, international electrical units, IEUS,
centimeter-gram-second, CGS, emu and esu, MKpS, meter-ton-second, MTS,
foot-pound-second, Stroud's system, FPS,
Imperial units, British units, UK units, atomic units, au, ancient
systems of units, national systems of units,
extractive metallurgy, pyrometallurgy,
hydrometallurgy, earth's sciences, mineralogy, crystallography,
petrology, petrography, geology,
geophysics, geochemistry, biology,
biochemistry, bio-implants, medecine,
stable isotopes,
primordial, cosmogenic, artificial, nuclides, radionuclides,
radioactivity, x-rays, alpha, beta, gamma, neutron, radiations, nuclear
detectors, scintillation, nuclear fuel cycle, spent nuclear fuel,
natural radioactivity.