Home
Map Books and Publications
Biography
Expertise
Directory and Links
Conferences Français Français Italiano Italiano

Tantalum protective thin coating techniques for the Chemical Process Industry: Molten salts electrocoating as a new alternative

François Cardarelli*, Pierre Taxil and André Savall

Abstract. - A comparison of corrosion resistance and basic properties of solid tantalum with other high-performance materials used in the Chemical Process Industry (CPI) is given. The corrosive chemicals taken into consideration are strong acidic media. Secondly, it is pointed out that tantalum, which exhibits excellent corrosion resistance, owing to a rapid build-up of passivating protective film in oxidizing conditions, also has good mechanical, thermal and electrical properties which suggest its use when little or no metallic corrosion is tolerated. Thirdly, tantalum thin-layer, coated onto a usual base metal, which offers the same protection as solid metal and avoids its expensive use, is treated. Fourthly, numerous tantalum-coating techniques for clad-vessel and CPI devices are reviewed and compared. Amongst these coating techniques, this paper focuses mainly on two techniques which give a very thin, protective coating against corrosion. Thus, Chemical Vapor Deposition (CVD) and Molten Salt Electro-deposition (MSE) are especially enhanced. Finally, MSE which is still not widely used for manufacturing clad-vessels is examined in greater detail.

International Journal of Refractory Metals and Hard Materials
Volume 14, Issues 5-6, 1996, Pages 365-381 [Full text PDF file (1.9 MB)]

Back to home or site map

Copyright © 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024, 2025 François Cardarelli [last updated: January 3, 2025] info@francoiscardarelli.ca

Website: http://www.francoiscardarelli.ca All rights reserved. Do not duplicate or mirror this site.

Keywords: maths, physics, mechanics, quantum mechanics, relativity, electricity, electrostatic, electromagnetism, magnetism, thermodynamics, acoustics, optics, chemistry, general chemistry, inorganic chemistry, organic chemistry, analytical chemistry, semi-micro qualitative analysis, quantitative analysis, physical chemistry, radiochemistry, nuclear chemistry, electrochemistry, spectrochemistry, surface chemistry, industrial chemistry, chemical engineering, electrochemical engineering, mechanical engineering, electrical engineering, thermal engineering, civil engineering, nuclear engineering, materials engineering, materials science, materials data, properties of materials properties, aqueous electrolytes, electrolysis, electrodics, electrode kinetics, corrosion science, electrodeposition, electrowinning, electrorefining, electrocatalysis, electrodes, inert anode, dimensionally stable anodes (DSA®), chlorine evolution, ruthenium dioxide (RuO2), DSA-Cl2, DSA-RuO2, oxygen evolution, iridium dioxide (IrO2), DSA-O2, DSA-IrO2, mixed metal oxides (MMO), activated titanium anodes, oxide coated titanium anodes, lead anodes, lead-silver anodes, lead dioxide (PbO2), spinel electrodes, ferrites, cobaltites, lithium metal, lithium batteries, lithium ion batteries, lithium polymer batteries, fuel cells, molten salts electrolytes, molten slags, liquid metals, titanium metal, titania, titania slag, titanium slag, titanium dioxide (TiO2), titanates, corrosion resistance, ferrous metals (Fe, Co, Ni, Mn), pig iron and steel, cobalt and cobalt alloys, nickel and nickel alloys, manganese, ferroalloys, ferrosilicon, ferrophosphorus, ferrochromium, silico-ferromanganese, ferrovanadium, ferromolybdenum, ferrotungsten, ferrotitanium, common nonferrous metals (Al, Cu, Zn, Pb, Sn), aluminium and aluminum alloys, aluminum and aluminum alloys, copper and copper alloys, zinc and zinc alloys, lead, tin, light metals, less common metals, alkali-metals, alkaline-earth metals, refractory metals (Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Re), titanium and titanium alloys, zirconium and zirconium alloys, hafnium and hafnium alloys, vanadium and vanadium alloys, niobium and niobium alloys, columbium and columbium alloys, tantalum and tantalum alloys, chromium, molybdenum and molybdenum alloys, tungsten and tungsten alloys, wolfram, rhenium and rhenium alloys, reactive metals, noble and precious metals (Ag, Au), silver, gold, platinum group metals (PGMs, Ru, Rh, Pd, Os, Ir, Pt), ruthenium, rhodium, palladium, osmium, iridium, platinum, rare earths, scandium, yttrium, lanthanum (Sc, Y, La), lanthanides, actinides, uranides (Th, Pa, U, Np, Pu) and curides, uranium, thorium, plutonium, heavy metals (Zn, Cd, Hg, In, Tl, Pb, Bi), mercury, cadmium, nonmetals, semimetals, metalloids (Si, Ge, As, Sb, Se, Te), silicon, germanium, arsenic, antimony, selenium, tellurium, semiconductors, superconductors, advanced ceramics, refractories, glasses, dielectrics, hard and soft magnetics, minerals, ores, rocks, soils, meteorites, metrology, measurements, scientific units, weights and measures, conversion factors, conversion tables, handbooks, equivalences, manuals, guide, système international d'unités, SI, SI derived units, MKSA, Giorgi, metric system, US customary system, American units, US units, international electrical units, IEUS, centimeter-gram-second, CGS, emu and esu, MKpS, meter-ton-second, MTS, foot-pound-second, Stroud's system, FPS, Imperial units, British units, UK units, atomic units, au, ancient systems of units, national systems of units, extractive metallurgy, pyrometallurgy, hydrometallurgy, earth's sciences, mineralogy, crystallography, petrology, petrography, geology, geophysics, geochemistry, biology, biochemistry, bio-implants, medecine, stable isotopes, primordial, cosmogenic, artificial, nuclides,  radionuclides, radioactivity, x-rays, alpha, beta, gamma, neutron, radiations, nuclear detectors, scintillation, nuclear fuel cycle, spent nuclear fuel, natural radioactivity.