Home
Map Books and Publications
Biography
Expertise
Directory and Links
Conferences
Français Français Italiano Italiano

Chemistry and mineralogy of titania-rich slags. Part 1—Hemo-ilmenite, sulphate, and upgraded titania slags

Michel Guéguin and François Cardarelli

Abstract. - Titania-rich slags with 80 mass percent TiO2 are produced in the electric arc furnaces of QIT-Fer & Titane, Inc., by the continuous smelting of hemo-ilmenite ore with anthracite coal. Titania slag represents an important feedstock for the manufacture of titanium dioxide pigment by the sulphate process. Moreover, part of the production of the titania-rich slag is further acid-leached under a high-pressure and moderate-temperature hydrometallurgical process to yield an upgraded titania slag with 94.5 mass percent TiO2, which is used in the chloride process. After describing in detail the beneficiation, chemistry, and mineralogy of the hemo-ilmenite ore, this article reviews the unique crystallochemistry and mineralogy of the titanate phases with pseudobrookite-karrooite structure and to a lesser extent silicates and oxides present in these titania-rich feedstocks, focusing on the chemical reactions occurring at each step of the pyro- and hydro-metallurgical processes. The behavior of major elements such as titanium, iron, magnesium, calcium, aluminum, and silicon along with that of minor elements such as vanadium, chromium, and manganese are particularly detailed. A general discussion of the methods specifically developed for the study of the synthetic minerals present in these materials is also presented.

Mineral Processing and Extractive Metallurgy Review
Volume 28, Number 1, January-March 2007, Pages 1-58 [Full text PDF file (2.5 MB)]

Back to home or site map

Copyright © 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024, 2025 François Cardarelli [last updated: January 3, 2025] info@francoiscardarelli.ca

Website: http://www.francoiscardarelli.ca All rights reserved. Do not duplicate or mirror this site.

Keywords: maths, physics, mechanics, quantum mechanics, relativity, electricity, electrostatic, electromagnetism, magnetism, thermodynamics, acoustics, optics, chemistry, general chemistry, inorganic chemistry, organic chemistry, analytical chemistry, semi-micro qualitative analysis, quantitative analysis, physical chemistry, radiochemistry, nuclear chemistry, electrochemistry, spectrochemistry, surface chemistry, industrial chemistry, chemical engineering, electrochemical engineering, mechanical engineering, electrical engineering, thermal engineering, civil engineering, nuclear engineering, materials engineering, materials science, materials data, properties of materials properties, aqueous electrolytes, electrolysis, electrodics, electrode kinetics, corrosion science, electrodeposition, electrowinning, electrorefining, electrocatalysis, electrodes, inert anode, dimensionally stable anodes (DSA®), chlorine evolution, ruthenium dioxide (RuO2), DSA-Cl2, DSA-RuO2, oxygen evolution, iridium dioxide (IrO2), DSA-O2, DSA-IrO2, mixed metal oxides (MMO), activated titanium anodes, oxide coated titanium anodes, lead anodes, lead-silver anodes, lead dioxide (PbO2), spinel electrodes, ferrites, cobaltites, lithium metal, lithium batteries, lithium ion batteries, lithium polymer batteries, fuel cells, molten salts electrolytes, molten slags, liquid metals, titanium metal, titania, titania slag, titanium slag, titanium dioxide (TiO2), titanates, corrosion resistance, ferrous metals (Fe, Co, Ni, Mn), pig iron and steel, cobalt and cobalt alloys, nickel and nickel alloys, manganese, ferroalloys, ferrosilicon, ferrophosphorus, ferrochromium, silico-ferromanganese, ferrovanadium, ferromolybdenum, ferrotungsten, ferrotitanium, common nonferrous metals (Al, Cu, Zn, Pb, Sn), aluminium and aluminum alloys, aluminum and aluminum alloys, copper and copper alloys, zinc and zinc alloys, lead, tin, light metals, less common metals, alkali-metals, alkaline-earth metals, refractory metals (Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Re), titanium and titanium alloys, zirconium and zirconium alloys, hafnium and hafnium alloys, vanadium and vanadium alloys, niobium and niobium alloys, columbium and columbium alloys, tantalum and tantalum alloys, chromium, molybdenum and molybdenum alloys, tungsten and tungsten alloys, wolfram, rhenium and rhenium alloys, reactive metals, noble and precious metals (Ag, Au), silver, gold, platinum group metals (PGMs, Ru, Rh, Pd, Os, Ir, Pt), ruthenium, rhodium, palladium, osmium, iridium, platinum, rare earths, scandium, yttrium, lanthanum (Sc, Y, La), lanthanides, actinides, uranides (Th, Pa, U, Np, Pu) and curides, uranium, thorium, plutonium, heavy metals (Zn, Cd, Hg, In, Tl, Pb, Bi), mercury, cadmium, nonmetals, semimetals, metalloids (Si, Ge, As, Sb, Se, Te), silicon, germanium, arsenic, antimony, selenium, tellurium, semiconductors, superconductors, advanced ceramics, refractories, glasses, dielectrics, hard and soft magnetics, minerals, ores, rocks, soils, meteorites, metrology, measurements, scientific units, weights and measures, conversion factors, conversion tables, handbooks, equivalences, manuals, guide, système international d'unités, SI, SI derived units, MKSA, Giorgi, metric system, US customary system, American units, US units, international electrical units, IEUS, centimeter-gram-second, CGS, emu and esu, MKpS, meter-ton-second, MTS, foot-pound-second, Stroud's system, FPS, Imperial units, British units, UK units, atomic units, au, ancient systems of units, national systems of units, extractive metallurgy, pyrometallurgy, hydrometallurgy, earth's sciences, mineralogy, crystallography, petrology, petrography, geology, geophysics, geochemistry, biology, biochemistry, bio-implants, medecine, stable isotopes, primordial, cosmogenic, artificial, nuclides,  radionuclides, radioactivity, x-rays, alpha, beta, gamma, neutron, radiations, nuclear detectors, scintillation, nuclear fuel cycle, spent nuclear fuel, natural radioactivity.